Implementing the deep speed of scalable transformers: Advanced training with gradient checkpoints and parallelism
In this advanced Deep speed Tutorial, we provide hands-on walkthroughs for effectively training cutting-edge optimization techniques for large language models. By combining zero optimization, mixed semen training, gradient accumulation, and advanced deep-speed configuration, the tutorial demonstrates how to maximize GPU memory utilization, reduce training overhead, and enable scaling of transformer models such as COLAB in resource-constrained environments. In addition to creating models and training, it covers different zero phases of performance monitoring, inference optimization, checkpointing and benchmarking, providing practitioners with theoretical insights and practical code to accelerate model development. Check The complete code is here.
import subprocess
import sys
import os
import json
import time
from pathlib import Path
def install_dependencies():
"""Install required packages for DeepSpeed in Colab"""
print("🚀 Installing DeepSpeed and dependencies...")
subprocess.check_call([
sys.executable, "-m", "pip", "install",
"torch", "torchvision", "torchaudio", "--index-url",
"
])
subprocess.check_call([sys.executable, "-m", "pip", "install", "deepspeed"])
subprocess.check_call([
sys.executable, "-m", "pip", "install",
"transformers", "datasets", "accelerate", "wandb"
])
print("✅ Installation complete!")
install_dependencies()
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader, Dataset
import deepspeed
from transformers import GPT2Config, GPT2LMHeadModel, GPT2Tokenizer
import numpy as np
from typing import Dict, Any
import argparse
We build a COLAB environment by installing Pytorch with CUDA support, DeepSpeed and required libraries such as transformers, datasets, acceleration and weights and biases. We make sure everything is ready so that we can build and train the model smoothly with DeepSpeed. Check The complete code is here.
class SyntheticTextDataset(Dataset):
"""Synthetic dataset for demonstration purposes"""
def __init__(self, size: int = 1000, seq_length: int = 512, vocab_size: int = 50257):
self.size = size
self.seq_length = seq_length
self.vocab_size = vocab_size
self.data = torch.randint(0, vocab_size, (size, seq_length))
def __len__(self):
return self.size
def __getitem__(self, idx):
return {
'input_ids': self.data[idx],
'labels': self.data[idx].clone()
}
We create a comprehensive extdataset in which we generate a sequence of random tokens to simulate real text data. We use these sequences as inputs and labels, allowing us to quickly test DeepSpeed training without relying on large external datasets. Check The complete code is here.
class AdvancedDeepSpeedTrainer:
"""Advanced DeepSpeed trainer with multiple optimization techniques"""
def __init__(self, model_config: Dict[str, Any], ds_config: Dict[str, Any]):
self.model_config = model_config
self.ds_config = ds_config
self.model = None
self.engine = None
self.tokenizer = None
def create_model(self):
"""Create a GPT-2 style model for demonstration"""
print("🧠 Creating model...")
config = GPT2Config(
vocab_size=self.model_config['vocab_size'],
n_positions=self.model_config['seq_length'],
n_embd=self.model_config['hidden_size'],
n_layer=self.model_config['num_layers'],
n_head=self.model_config['num_heads'],
resid_pdrop=0.1,
embd_pdrop=0.1,
attn_pdrop=0.1,
)
self.model = GPT2LMHeadModel(config)
self.tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
self.tokenizer.pad_token = self.tokenizer.eos_token
print(f"📊 Model parameters: {sum(p.numel() for p in self.model.parameters()):,}")
return self.model
def create_deepspeed_config(self):
"""Create comprehensive DeepSpeed configuration"""
return {
"train_batch_size": self.ds_config['train_batch_size'],
"train_micro_batch_size_per_gpu": self.ds_config['micro_batch_size'],
"gradient_accumulation_steps": self.ds_config['gradient_accumulation_steps'],
"zero_optimization": {
"stage": self.ds_config['zero_stage'],
"allgather_partitions": True,
"allgather_bucket_size": 5e8,
"overlap_comm": True,
"reduce_scatter": True,
"reduce_bucket_size": 5e8,
"contiguous_gradients": True,
"cpu_offload": self.ds_config.get('cpu_offload', False)
},
"fp16": {
"enabled": True,
"loss_scale": 0,
"loss_scale_window": 1000,
"initial_scale_power": 16,
"hysteresis": 2,
"min_loss_scale": 1
},
"optimizer": {
"type": "AdamW",
"params": {
"lr": self.ds_config['learning_rate'],
"betas": [0.9, 0.999],
"eps": 1e-8,
"weight_decay": 0.01
}
},
"scheduler": {
"type": "WarmupLR",
"params": {
"warmup_min_lr": 0,
"warmup_max_lr": self.ds_config['learning_rate'],
"warmup_num_steps": 100
}
},
"gradient_clipping": 1.0,
"wall_clock_breakdown": True,
"memory_breakdown": True,
"tensorboard": {
"enabled": True,
"output_path": "./logs/",
"job_name": "deepspeed_advanced_tutorial"
}
}
def initialize_deepspeed(self):
"""Initialize DeepSpeed engine"""
print("⚡ Initializing DeepSpeed...")
parser = argparse.ArgumentParser()
parser.add_argument('--local_rank', type=int, default=0)
args = parser.parse_args([])
self.engine, optimizer, _, lr_scheduler = deepspeed.initialize(
args=args,
model=self.model,
config=self.create_deepspeed_config()
)
print(f"🎯 DeepSpeed engine initialized with ZeRO stage {self.ds_config['zero_stage']}")
return self.engine
def train_step(self, batch: Dict[str, torch.Tensor]) -> Dict[str, float]:
"""Perform a single training step with DeepSpeed optimizations"""
input_ids = batch['input_ids'].to(self.engine.device)
labels = batch['labels'].to(self.engine.device)
outputs = self.engine(input_ids=input_ids, labels=labels)
loss = outputs.loss
self.engine.backward(loss)
self.engine.step()
return {
'loss': loss.item(),
'lr': self.engine.lr_scheduler.get_last_lr()[0] if self.engine.lr_scheduler else 0
}
def train(self, dataloader: DataLoader, num_epochs: int = 2):
"""Complete training loop with monitoring"""
print(f"🏋️ Starting training for {num_epochs} epochs...")
self.engine.train()
total_steps = 0
for epoch in range(num_epochs):
epoch_loss = 0.0
epoch_steps = 0
print(f"n📈 Epoch {epoch + 1}/{num_epochs}")
for step, batch in enumerate(dataloader):
start_time = time.time()
metrics = self.train_step(batch)
epoch_loss += metrics['loss']
epoch_steps += 1
total_steps += 1
if step % 10 == 0:
step_time = time.time() - start_time
print(f" Step {step:4d} | Loss: {metrics['loss']:.4f} | "
f"LR: {metrics['lr']:.2e} | Time: {step_time:.3f}s")
if step % 20 == 0 and hasattr(self.engine, 'monitor'):
self.log_memory_stats()
if step >= 50:
break
avg_loss = epoch_loss / epoch_steps
print(f"📊 Epoch {epoch + 1} completed | Average Loss: {avg_loss:.4f}")
print("🎉 Training completed!")
def log_memory_stats(self):
"""Log GPU memory statistics"""
if torch.cuda.is_available():
allocated = torch.cuda.memory_allocated() / 1024**3
reserved = torch.cuda.memory_reserved() / 1024**3
print(f" 💾 GPU Memory - Allocated: {allocated:.2f}GB | Reserved: {reserved:.2f}GB")
def save_checkpoint(self, path: str):
"""Save model checkpoint using DeepSpeed"""
print(f"💾 Saving checkpoint to {path}")
self.engine.save_checkpoint(path)
def demonstrate_inference(self, text: str = "The future of AI is"):
"""Demonstrate optimized inference with DeepSpeed"""
print(f"n🔮 Running inference with prompt: '{text}'")
inputs = self.tokenizer.encode(text, return_tensors="pt").to(self.engine.device)
self.engine.eval()
with torch.no_grad():
outputs = self.engine.module.generate(
inputs,
max_length=inputs.shape[1] + 50,
num_return_sequences=1,
temperature=0.8,
do_sample=True,
pad_token_id=self.tokenizer.eos_token_id
)
generated_text = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
print(f"📝 Generated text: {generated_text}")
self.engine.train()
We built an end-to-end trainer, the coach creates the GPT-2 model, sets up the DeepSpeed Config (zero, FP16, ADAMW, HAVILUP Scheduler, Tensorboard), and initializes the engine. We then conduct effective training steps through logging and memory statistics, save checkpoints, and demonstrate inference to validate optimization and generation in one place. Check The complete code is here.
def run_advanced_tutorial():
"""Main function to run the advanced DeepSpeed tutorial"""
print("🌟 Advanced DeepSpeed Tutorial Starting...")
print("=" * 60)
model_config = {
'vocab_size': 50257,
'seq_length': 512,
'hidden_size': 768,
'num_layers': 6,
'num_heads': 12
}
ds_config = {
'train_batch_size': 16,
'micro_batch_size': 4,
'gradient_accumulation_steps': 4,
'zero_stage': 2,
'learning_rate': 1e-4,
'cpu_offload': False
}
print("📋 Configuration:")
print(f" Model size: ~{sum(np.prod(shape) for shape in [[model_config['vocab_size'], model_config['hidden_size']], [model_config['hidden_size'], model_config['hidden_size']] * model_config['num_layers']]) / 1e6:.1f}M parameters")
print(f" ZeRO Stage: {ds_config['zero_stage']}")
print(f" Batch size: {ds_config['train_batch_size']}")
trainer = AdvancedDeepSpeedTrainer(model_config, ds_config)
model = trainer.create_model()
engine = trainer.initialize_deepspeed()
print("n📚 Creating synthetic dataset...")
dataset = SyntheticTextDataset(
size=200,
seq_length=model_config['seq_length'],
vocab_size=model_config['vocab_size']
)
dataloader = DataLoader(
dataset,
batch_size=ds_config['micro_batch_size'],
shuffle=True
)
print("n📊 Pre-training memory stats:")
trainer.log_memory_stats()
trainer.train(dataloader, num_epochs=2)
print("n📊 Post-training memory stats:")
trainer.log_memory_stats()
trainer.demonstrate_inference("DeepSpeed enables efficient training of")
checkpoint_path = "./deepspeed_checkpoint"
trainer.save_checkpoint(checkpoint_path)
demonstrate_zero_stages()
demonstrate_memory_optimization()
print("n🎯 Tutorial completed successfully!")
print("Key DeepSpeed features demonstrated:")
print(" ✅ ZeRO optimization for memory efficiency")
print(" ✅ Mixed precision training (FP16)")
print(" ✅ Gradient accumulation")
print(" ✅ Learning rate scheduling")
print(" ✅ Checkpoint saving/loading")
print(" ✅ Memory monitoring")
def demonstrate_zero_stages():
"""Demonstrate different ZeRO optimization stages"""
print("n🔧 ZeRO Optimization Stages Explained:")
print(" Stage 0: Disabled (baseline)")
print(" Stage 1: Optimizer state partitioning (~4x memory reduction)")
print(" Stage 2: Gradient partitioning (~8x memory reduction)")
print(" Stage 3: Parameter partitioning (~Nx memory reduction)")
zero_configs = {
1: {"stage": 1, "reduce_bucket_size": 5e8},
2: {"stage": 2, "allgather_partitions": True, "reduce_scatter": True},
3: {"stage": 3, "stage3_prefetch_bucket_size": 5e8, "stage3_param_persistence_threshold": 1e6}
}
for stage, config in zero_configs.items():
estimated_memory_reduction = [1, 4, 8, "Nx"][stage]
print(f" 📉 Stage {stage}: ~{estimated_memory_reduction}x memory reduction")
def demonstrate_memory_optimization():
"""Show memory optimization techniques"""
print("n🧠 Memory Optimization Techniques:")
print(" 🔄 Gradient Checkpointing: Trade compute for memory")
print(" 📤 CPU Offloading: Move optimizer states to CPU")
print(" 🗜️ Compression: Reduce communication overhead")
print(" ⚡ Mixed Precision: Use FP16 for faster training")
We plan a complete training run: set up configuration, build GPT-2 models and DeepSpeed engines, create synthetic datasets, monitor GPU memory, train for two periods, run inference and save checkpoints. We then interpret phase zero and highlight memory optimization strategies such as gradient checkpoints and CPU offloading to understand the tradeoffs in practice. Check The complete code is here.
class DeepSpeedConfigGenerator:
"""Utility class to generate DeepSpeed configurations"""
@staticmethod
def generate_config(
batch_size: int = 16,
zero_stage: int = 2,
use_cpu_offload: bool = False,
learning_rate: float = 1e-4
) -> Dict[str, Any]:
"""Generate a complete DeepSpeed configuration"""
config = {
"train_batch_size": batch_size,
"train_micro_batch_size_per_gpu": max(1, batch_size // 4),
"gradient_accumulation_steps": max(1, batch_size // max(1, batch_size // 4)),
"zero_optimization": {
"stage": zero_stage,
"allgather_partitions": True,
"allgather_bucket_size": 5e8,
"overlap_comm": True,
"reduce_scatter": True,
"reduce_bucket_size": 5e8,
"contiguous_gradients": True
},
"fp16": {
"enabled": True,
"loss_scale": 0,
"loss_scale_window": 1000,
"initial_scale_power": 16,
"hysteresis": 2,
"min_loss_scale": 1
},
"optimizer": {
"type": "AdamW",
"params": {
"lr": learning_rate,
"betas": [0.9, 0.999],
"eps": 1e-8,
"weight_decay": 0.01
}
},
"scheduler": {
"type": "WarmupLR",
"params": {
"warmup_min_lr": 0,
"warmup_max_lr": learning_rate,
"warmup_num_steps": 100
}
},
"gradient_clipping": 1.0,
"wall_clock_breakdown": True
}
if use_cpu_offload:
config["zero_optimization"]["cpu_offload"] = True
config["zero_optimization"]["pin_memory"] = True
if zero_stage == 3:
config["zero_optimization"].update({
"stage3_prefetch_bucket_size": 5e8,
"stage3_param_persistence_threshold": 1e6,
"stage3_gather_16bit_weights_on_model_save": True
})
return config
def benchmark_zero_stages():
"""Benchmark different ZeRO stages"""
print("n🏁 Benchmarking ZeRO Stages...")
model_config = {
'vocab_size': 50257,
'seq_length': 256,
'hidden_size': 512,
'num_layers': 4,
'num_heads': 8
}
results = {}
for stage in [1, 2]:
print(f"n🔬 Testing ZeRO Stage {stage}...")
ds_config = {
'train_batch_size': 8,
'micro_batch_size': 2,
'gradient_accumulation_steps': 4,
'zero_stage': stage,
'learning_rate': 1e-4
}
try:
trainer = AdvancedDeepSpeedTrainer(model_config, ds_config)
model = trainer.create_model()
engine = trainer.initialize_deepspeed()
if torch.cuda.is_available():
torch.cuda.reset_peak_memory_stats()
dataset = SyntheticTextDataset(size=20, seq_length=model_config['seq_length'])
dataloader = DataLoader(dataset, batch_size=ds_config['micro_batch_size'])
start_time = time.time()
for i, batch in enumerate(dataloader):
if i >= 5:
break
trainer.train_step(batch)
end_time = time.time()
peak_memory = torch.cuda.max_memory_allocated() / 1024**3
results[stage] = {
'peak_memory_gb': peak_memory,
'time_per_step': (end_time - start_time) / 5
}
print(f" 📊 Peak Memory: {peak_memory:.2f}GB")
print(f" ⏱️ Time per step: {results[stage]['time_per_step']:.3f}s")
del trainer, model, engine
torch.cuda.empty_cache()
except Exception as e:
print(f" ❌ Error with stage {stage}: {str(e)}")
if len(results) > 1:
print(f"n📈 Comparison:")
stage_1_memory = results.get(1, {}).get('peak_memory_gb', 0)
stage_2_memory = results.get(2, {}).get('peak_memory_gb', 0)
if stage_1_memory > 0 and stage_2_memory > 0:
memory_reduction = (stage_1_memory - stage_2_memory) / stage_1_memory * 100
print(f" 🎯 Memory reduction from Stage 1 to 2: {memory_reduction:.1f}%")
def demonstrate_advanced_features():
"""Demonstrate additional advanced DeepSpeed features"""
print("n🚀 Advanced DeepSpeed Features:")
print(" 🎚️ Dynamic Loss Scaling: Automatically adjusts FP16 loss scaling")
print(" 🗜️ Gradient Compression: Reduces communication overhead")
print(" 🔄 Pipeline Parallelism: Splits model across devices")
print(" 🧑🎓 Expert Parallelism: Efficient Mixture-of-Experts training")
print(" 📚 Curriculum Learning: Progressive training strategies")
if __name__ == "__main__":
print(f"🖥️ CUDA Available: {torch.cuda.is_available()}")
if torch.cuda.is_available():
print(f" GPU: {torch.cuda.get_device_name()}")
print(f" Memory: {torch.cuda.get_device_properties(0).total_memory / 1024**3:.1f}GB")
try:
run_advanced_tutorial()
benchmark_zero_stages()
demonstrate_advanced_features()
except Exception as e:
print(f"❌ Error during tutorial: {str(e)}")
print("💡 Tips for troubleshooting:")
print(" - Ensure you have GPU runtime enabled in Colab")
print(" - Try reducing batch_size or model size if facing memory issues")
print(" - Enable CPU offloading in ds_config if needed")
We generate reusable deep speed configurations, benchmark zero phases to compare memory and speeds, and demonstrate advanced features such as dynamic loss scaling and pipeline/MOE parallelism. We also detect CUDA, run full tutorials end-to-end, and provide clear troubleshooting tips that allow us to iterate in Colab with confidence.
In short, we enhance a comprehensive understanding of how DeepSpeed improves model training efficiency by achieving a balance between performance and memory tradeoffs. From taking advantage of zero stages to reduce memory, to applying FP16 mixed precision and CPU offload, the tutorial demonstrates powerful strategies to make large-scale training accessible on modest hardware. Finally, learners will train and optimize GPT-style models, benchmark configurations, monitor GPU resources, and explore advanced features such as pipeline parallelism and gradient compression.
Check The complete code is here. Check out ours anytime Tutorials, codes and notebooks for github pages. Also, please stay tuned for us twitter And don’t forget to join us 100K+ ml reddit And subscribe Our newsletter.
Asif Razzaq is CEO of Marktechpost Media Inc. As a visionary entrepreneur and engineer, ASIF is committed to harnessing the potential of artificial intelligence to achieve social benefits. His recent effort is to launch Marktechpost, an artificial intelligence media platform that has an in-depth coverage of machine learning and deep learning news that can sound both technically, both through technical voices and be understood by a wide audience. The platform has over 2 million views per month, demonstrating its popularity among its audience.