Hesgoal || TOTALSPORTEK|| F1 STREAMS || SOCCER STREAMS moverightnaija

Build and optimize intelligent machine learning pipelines with TPOT for full automation and enhanced performance

We begin this tutorial to demonstrate how to use it TPOT It’s actually to automate and optimize the machine learning pipeline. By working directly in Google Colab, we ensure that the settings are lightweight, repeatable and easy to access. We browse load data, define custom scorers, tailor the search space using XGBoost (such as XGBOOST), and set up cross-validation strategies. In progress, we explore how to search for evolutionary algorithms in high-performance pipelines in TPOT, thus providing us with transparency through Pareto frontiers and checkpoints. Check The complete code is here.

!pip -q install tpot==0.12.2 xgboost==2.0.3 scikit-learn==1.4.2 graphviz==0.20.3


import os, json, math, time, random, numpy as np, pandas as pd
from sklearn.datasets import load_breast_cancer
from sklearn.model_selection import train_test_split, StratifiedKFold
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import make_scorer, f1_score, classification_report, confusion_matrix
from sklearn.pipeline import Pipeline
from tpot import TPOTClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.naive_bayes import GaussianNB
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier, ExtraTreesClassifier, GradientBoostingClassifier
from xgboost import XGBClassifier


SEED = 7
random.seed(SEED); np.random.seed(SEED); os.environ["PYTHONHASHSEED"]=str(SEED)

We first install the library and import all the basic modules that support data processing, model building and pipeline optimization. We set up a fixed random seed to ensure that the results remain reproducible each time the notebook is run. Check The complete code is here.

X, y = load_breast_cancer(return_X_y=True, as_frame=True)
X_tr, X_te, y_tr, y_te = train_test_split(X, y, test_size=0.3, stratify=y, random_state=SEED)


scaler = StandardScaler().fit(X_tr)
X_tr_s, X_te_s = scaler.transform(X_tr), scaler.transform(X_te)


def f1_cost_sensitive(y_true, y_pred):
   return f1_score(y_true, y_pred, average="binary", pos_label=1)
cost_f1 = make_scorer(f1_cost_sensitive, greater_is_better=True)

Here we load the breast cancer dataset and divide it into training and test sets while maintaining class balance. We standardize the functionality of stability and then define a custom-based F1-based scorer that allows us to evaluate the pipeline with the focus on effectively capturing positive cases. Check The complete code is here.

tpot_config = {
   'sklearn.linear_model.LogisticRegression': {
       'C': [0.01, 0.1, 1.0, 10.0],
       'penalty': ['l2'], 'solver': ['lbfgs'], 'max_iter': [200]
   },
   'sklearn.naive_bayes.GaussianNB': {},
   'sklearn.tree.DecisionTreeClassifier': {
       'criterion': ['gini','entropy'], 'max_depth': [3,5,8,None],
       'min_samples_split':[2,5,10], 'min_samples_leaf':[1,2,4]
   },
   'sklearn.ensemble.RandomForestClassifier': {
       'n_estimators':[100,300], 'criterion':['gini','entropy'],
       'max_depth':[None,8], 'min_samples_split':[2,5], 'min_samples_leaf':[1,2]
   },
   'sklearn.ensemble.ExtraTreesClassifier': {
       'n_estimators':[200], 'criterion':['gini','entropy'],
       'max_depth':[None,8], 'min_samples_split':[2,5], 'min_samples_leaf':[1,2]
   },
   'sklearn.ensemble.GradientBoostingClassifier': {
       'n_estimators':[100,200], 'learning_rate':[0.03,0.1],
       'max_depth':[2,3], 'subsample':[0.8,1.0]
   },
   'xgboost.XGBClassifier': {
       'n_estimators':[200,400], 'max_depth':[3,5], 'learning_rate':[0.05,0.1],
       'subsample':[0.8,1.0], 'colsample_bytree':[0.8,1.0],
       'reg_lambda':[1.0,2.0], 'min_child_weight':[1,3],
       'n_jobs':[0], 'tree_method':['hist'], 'eval_metric':['logloss'],
       'gamma':[0,1]
   }
}


cv = StratifiedKFold(n_splits=5, shuffle=True, random_state=SEED)

We define a custom TPOT configuration that combines linear models, tree-based learners, ensembles, and XGBoost, and utilizes carefully selected hyperparameters. We also established a hierarchical 5x cross-validation strategy to ensure that each candidate pipeline is fairly tested in balanced splitting of the dataset. Check The complete code is here.

t0 = time.time()
tpot = TPOTClassifier(
   generations=5,                
   population_size=40,           
   offspring_size=40,
   scoring=cost_f1,
   cv=cv,
   subsample=0.8,                 
   n_jobs=-1,
   config_dict=tpot_config,
   verbosity=2,
   random_state=SEED,
   max_time_mins=10,             
   early_stop=3,
   periodic_checkpoint_folder="tpot_ckpt",
   warm_start=False
)
tpot.fit(X_tr_s, y_tr)
print(f"n⏱️ First search took {time.time()-t0:.1f}s")


def pareto_table(tpot_obj, k=5):
   rows=[]
   for ind, meta in tpot_obj.pareto_front_fitted_pipelines_.items():
       rows.append({
           "pipeline": ind, "cv_score": meta['internal_cv_score'],
           "size": len(str(meta['pipeline'])),
       })
   df = pd.DataFrame(rows).sort_values("cv_score", ascending=False).head(k)
   return df.reset_index(drop=True)


pareto_df = pareto_table(tpot, k=5)
print("nTop Pareto pipelines (cv):n", pareto_df)


def eval_pipeline(pipeline, X_te, y_te, name):
   y_hat = pipeline.predict(X_te)
   f1 = f1_score(y_te, y_hat)
   print(f"n[{name}] F1(test) = {f1:.4f}")
   print(classification_report(y_te, y_hat, digits=3))


print("nEvaluating top pipelines on test:")
for i, (ind, meta) in enumerate(sorted(
       tpot.pareto_front_fitted_pipelines_.items(),
       key=lambda kv: kv[1]['internal_cv_score'], reverse=True)[:3], 1):
   eval_pipeline(meta['pipeline'], X_te_s, y_te, name=f"Pareto#{i}")

We started evolutionary searches using TPOT, limiting practical runtimes, and checkpoint progress, allowing us to repeatedly search for powerful pipelines. We then examine the Pareto front to identify top tradeoffs, convert them into compact tables, and select leaders based on cross-validation scores. Finally, we evaluated the best candidates in the Hold-Out test set to confirm real-world performance using F1 and full classification reports. Check The complete code is here.

print("n🔁 Warm-start for extra refinement...")
t1 = time.time()
tpot2 = TPOTClassifier(
   generations=3, population_size=40, offspring_size=40,
   scoring=cost_f1, cv=cv, subsample=0.8, n_jobs=-1,
   config_dict=tpot_config, verbosity=2, random_state=SEED,
   warm_start=True, periodic_checkpoint_folder="tpot_ckpt"
)
try:
   tpot2._population = tpot._population
   tpot2._pareto_front = tpot._pareto_front
except Exception:
   pass
tpot2.fit(X_tr_s, y_tr)
print(f"⏱️ Warm-start extra search took {time.time()-t1:.1f}s")


best_model = tpot2.fitted_pipeline_ if hasattr(tpot2, "fitted_pipeline_") else tpot.fitted_pipeline_
eval_pipeline(best_model, X_te_s, y_te, name="BestAfterWarmStart")


export_path = "tpot_best_pipeline.py"
(tpot2 if hasattr(tpot2, "fitted_pipeline_") else tpot).export(export_path)
print(f"n📦 Exported best pipeline to: {export_path}")


from importlib import util as _util
spec = _util.spec_from_file_location("tpot_best", export_path)
tbest = _util.module_from_spec(spec); spec.loader.exec_module(tbest)
reloaded_clf = tbest.exported_pipeline_
pipe = Pipeline([("scaler", scaler), ("model", reloaded_clf)])
pipe.fit(X_tr, y_tr)
eval_pipeline(pipe, X_te, y_te, name="ReloadedExportedPipeline")


report = {
   "dataset": "sklearn breast_cancer",
   "train_size": int(X_tr.shape[0]), "test_size": int(X_te.shape[0]),
   "cv": "StratifiedKFold(5)",
   "scorer": "custom F1 (binary)",
   "search": {"gen_1": 5, "gen_2_warm": 3, "pop": 40, "subsample": 0.8},
   "exported_pipeline_first_120_chars": str(reloaded_clf)[:120]+"...",
}
print("n🧾 Model Card:n", json.dumps(report, indent=2))

We continue our search with a warm start, repeating the warmth of learning to optimize candidates and select the best performance in our test set. We export the winning pipeline, reload it with Scaler to the mimic deployment, and verify its results. Finally, we generate a compact model card to record the dataset, search for settings, and export the pipeline summary for repeatability.

All in all, we see how TPOT takes us beyond trial model selection and rely on automation, reproducible and interpretable optimizations. We export the best pipeline, validate it on invisible data, and even reload it for deployment use, confirming that the workflow is not only experimental but also production-ready. By combining repeatability, flexibility and interpretability, we end with a powerful framework where we can confidently apply to more complex datasets and real-world problems.


Check The complete code is here. Check out ours anytime Tutorials, codes and notebooks for github pages. Also, please stay tuned for us twitter And don’t forget to join us 100K+ ml reddit And subscribe Our newsletter.


Asif Razzaq is CEO of Marktechpost Media Inc. As a visionary entrepreneur and engineer, ASIF is committed to harnessing the potential of artificial intelligence to achieve social benefits. His recent effort is to launch Marktechpost, an artificial intelligence media platform that has an in-depth coverage of machine learning and deep learning news that can sound both technically, both through technical voices and be understood by a wide audience. The platform has over 2 million views per month, demonstrating its popularity among its audience.

You may also like...